Math 1314 Section: \qquad

Lab 3 Chapter 3

Name: \qquad
Please show all work in the space provided for credit.
1.) The equation $y=-657.095 x^{2}+2859.214 x+12109.167$ models the sales of $R V$'s (recreational vehicles) in millions of dollars (y) from 2003 to 2009. " x " is the number of years past 2003. ($y=1,234$ means $\$ 1,234,000,000$)
a.) Algebraically, find the year in which the sales for $R V$'s was at its maximum. Use $x=-b / 2 a$ formula. Show work.

Find the year: \qquad
b.) What were the maximum RV sales in that year? (Notice units) \$ \qquad
2. For $g(x)=3 x^{2}-12 x+6$, answer the following questions.
a. Find the x -intercepts. Show work.
b. State the coordinates of the y-intercept. \qquad
c. State the vertex. \qquad
d. State the axis of symmetry.
e. State the direction of the parabola (opening up or down) \qquad
f. Decide whether there is a relative maximum or minimum, then state it. \qquad
g. Graph the function accurately using the above information.

Math 1314
Lab 3
3. Given a cubic polynomial function $p(x)=a x^{3}+b x^{2}+c x+d,(a, b, c, d \neq 0)$, answer the following questions. Justify each answer.
a. How many x-intercepts can there be? \qquad
b. Does the degree of this polynomial function guarantee any x-intercepts? \qquad
c. Will the graph pass through the origin? \qquad
d. Could the graph "touch" the x-axis in two different places? \qquad
e. Identify the end behavior of the graph. \qquad
f. If it is known that one zero is real and another zero is imaginary, what can be determined about the remaining zeros?
4.) The function $f(x)=\frac{6.5 x^{2}-20.4 x+234}{x^{2}+36}$ models the pH level, $f(x)$ of the human mouth x minutes after a person eats food containing sugar.
a. Determine to the nearest tenth the pH level of the human mouth 42 minutes after a person eats food containing sugar.
b. What is the equation of the horizontal asymptote associated with this function?
5.) For the function $f(x)=6 x^{4}-41 x^{3}+78 x^{2}-9 x-54$,
a. State the degree of the polynomial.
b. Use the Rational Zero Theorem to list all of the possible rational zeros.
c. Use a graphing calculator to determine which numbers in the list of possible rational zeros are probable rational zeros (indicated by the x-intercepts of the graph).

The graph appears to cross the x-axis at how many x-intercepts?
The graph appears to touch the x-axis at how many x-intercepts?
\qquad
d. Use synthetic division and then other algebraic methods to find all the zeros.

Zeros:

